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Text S1.  
Figure S1 shows the two background concentration estimates used in the health impact 

assessment analyses. To use the October 2016 observations to isolate fire-originated PM2.5, we 
downloaded hourly PM2.5 observations from 112 FRM/FEM monitoring stations between 1-31 
October 2016. We averaged the PM2.5 observations across the entire month at each station 
location and used the BME framework to spatially interpolate the averaged observations and 
estimate concentrations at a 1-km resolution. Using this approach, the background concentration 
surface is the same for all days during the fire period. To use the CMAQ percent attributable 
approach to isolate fire-originated PM2.5, we first calculated the percent of PM2.5 attributable to 
background emissions on each day, 8-20 October, using the CMAQ output with and without fire 
emissions. Figure S2 shows the estimated percent of PM2.5 concentrations attributable to fire 
emissions on 10 October. We then combined the percent attributable estimate with the total 
exposure estimate to estimate background concentrations. Using this approach, the background 
concentration estimate is different for each day during the fire period. As shown in Figure S1, the 
two methods produce dissimilar background concentration surfaces, explaining the differences in 
each method’s ability to isolate the fire-originated PM2.5. 

Text S2.  
Figure S3 shows the background daily rate of respiratory, cardiovascular, and asthma 

hospital admissions for each county in California in 2017. No county has high background 
admission rates for all three health outcomes, explaining some of the observed differences in the 
locations of high excess admissions rates during the fires.   

Text S3. 
Table S1 shows the estimated number of excess hospital admissions, using base case 

assumptions, for all three health outcomes on each day during the fires. As discussed in the 
Results section, 10 October had the highest number of excess respiratory and cardiovascular 
admissions and 11 October had the highest number of excess asthma admissions. Daily estimates 
of excess admissions by age and sex subgroup and for the sensitivity analyses are available from 
the corresponding author upon reasonable request.   

Text S4. 
Figure S4 shows the fire-attributable percent increase in hospital admissions for each health 

outcome across central California between 10-12 October, estimated using base case 
assumptions. In the health impact assessment equation, the percent increase in admissions is 
determined by the positive multiplier, (𝑒!∗∆$(𝒔,() − 1). Asthma hospital admissions saw the 
largest spike during the fires, with a greater than 33% increase in admissions in the Bay Area due 
to wildfire PM2.5 exposure. There was also a rise in respiratory hospital admissions, with a 10-
33% increase in admissions in the Bay Area. In comparison, there was only a slight increase in 
cardiovascular hospital admissions, with at most a 10% increase in admissions just north of San 
Francisco Bay. Since the same fire-originated PM2.5 exposure surface is used for estimating the 
excess admissions for all three health outcomes, the concentration-response function (CRF) is 
what drives the differences in the percent increase in admissions. The largest fire-attributable 
increase in hospital admissions is observed for asthma admissions because it has a steeper CRF 
in comparison to respiratory and cardiovascular hospital admissions. 



 
 

3 
 

Text S5. 
Figure S5 shows the total number of respiratory, cardiovascular, and asthma admissions 

attributable to fire-originated PM2.5 in each county between 8-20 October 2017, estimated using 
base case assumptions. The counties that experienced the most fire-attributable hospital 
admissions are located in the Bay Area. This region experienced the greatest acute health 
impacts in part due to high population density and the extreme smoke concentrations estimated 
in these counties during the 2017 fires. 

Text S6. 
Figure S6 shows a comparison of the five health impact assessment approaches for 

estimating daily excess respiratory and cardiovascular admissions between 8-20 October. As 
shown, there is variety in both the magnitude and the temporal trends of the excess admissions 
estimated, due to differences in the smoke exposure surfaces and CRFs used. For example, while 
all five approaches capture 11 October as the day with the largest number of excess admissions, 
CC-CMAQ, compared to BME data fusion or BME kriging, predicts a much steeper drop in 
attributable admissions between 11-15 October. The non-wildfire (NF) CRF has the most impact 
on the temporal trends in excess admissions, with less respiratory and more cardiovascular 
admissions estimated across the entire fire period.  

Figure S7 shows a comparison of the five health impact assessment approaches for 
estimating the rate of excess respiratory admissions across central California on 10 October. As 
shown, the assessment method used changes where high rates of excess admissions are located. 
When either CC-CMAQ or BME kriging is used to estimate total PM2.5, instead of BME data 
fusion, there is an increase in the frequency of high excess admission rates and a shift in which 
regions are most impacted. Using the October 2016 surface to isolate fire-originated PM2.5, 
instead of CMAQ percent attributable, does not notably impact the locations of high attributable 
admission rates, but does increase the number of regions in central California with an observable 
rate of excess admissions. There is minimal change in the locations of excess admission rates 
when the NF CRF is used.   

Figure S8 shows a comparison of the four methods for estimating daily fire-originated 
PM2.5 exposure. All of the exposure estimation methods produce notably different estimates of 
the spatial average, population-weighted average, and 95th percentile of wildfire PM2.5, which 
explains some of the differences observed in the total number of excess admissions estimated. 
For example, using CC-CMAQ as the total exposure estimate results in higher estimated 
concentrations between 11-14 October compared to using BME data fusion or BME kriging. 
Further, using the October 2016 surface to isolate fire-originated concentrations, instead of 
CMAQ percent attributable, results in lower peaks in estimated concentrations on 11-12 and 16-
17 October.   

Figure S9 shows the sensitivity analysis comparing the 95% confidence intervals (CIs) of 
the estimated number of excess cardiovascular hospital admissions when uncertainty from either 
or both the CRF and total exposure surface are accounted for, for all three total PM2.5 surfaces. 
As shown in the Results section, when uncertainty from both the CRF and total exposure 
estimate are accounted for, CC-CMAQ produces the largest CI around the cardiovascular 
admissions estimate and BME data fusion produces the smallest. For all three exposure surfaces, 
the CRF is the primary source of uncertainty in the final admissions estimate, but the relative 
amount of uncertainty contributed by the CRF varies widely. When CC-CMAQ is used, the CRF 
and total exposure estimate contribute approximately equal levels of uncertainty. In comparison, 
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when BME data fusion or BME kriging is used, the vast majority of uncertainty in the final 
estimate comes from the CRF, with the total exposure estimate contributing very little. Table S2 
contains the numeric data of the uncertainty analyses presented in Figures 4 and S9.  
 

 
Figure S1. Comparison of methods for estimating background PM2.5 concentrations during the 
October 2017 wildfires. Estimates obtained through BME kriging of October 2016 monitoring 
station observations (left) and percent of PM2.5 attributable to background emissions from 
CMAQ output with and without fire emissions, shown on 10 October 2017 (right). 
 

 
Figure S2. Estimate of the percent of PM2.5 concentrations attributable to wildfire emissions on 
10 October 2017, obtained from CMAQ output with and without fire emissions.  
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Figure S3. County-level background daily rate of respiratory, cardiovascular, and asthma 
hospital admissions across California in 2017.  
 

 
Figure S4. Percent increase in respiratory, cardiovascular, and asthma hospital admissions due to 
wildfire PM2.5 exposure, 10-12 October 2017, estimated using base case assumptions. 
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Figure S5. Number of excess respiratory, cardiovascular, and asthma admissions in each county, 
8-20 October 2017, estimated using base case assumptions. 
 

 
Figure S6. Comparison of the five health impact assessment approaches for estimating daily 
excess respiratory and cardiovascular hospital admissions between 8-20 October 2017. (1) Base 
case, BME data fusion with CMAQ % attributable and WF CRF; (2) CC-CMAQ with CMAQ % 
attributable and WF CRF; (3) BME kriging with CMAQ % attributable and WF CRF; (4) BME 
data fusion with October 2016 and WF CRF; (5) BME data fusion with CMAQ % attributable 
and NF CRF. 
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Figure S7. Comparison of the five health impact assessment approaches for estimating daily 
excess respiratory hospital admissions across central California on 10 October 2017. (1) Base 
case, BME data fusion with CMAQ % attributable and WF CRF; (2) CC-CMAQ with CMAQ % 
attributable and WF CRF; (3) BME kriging with CMAQ % attributable and WF CRF; (4) BME 
data fusion with October 2016 and WF CRF; (5) BME data fusion with CMAQ % attributable 
and NF CRF. 
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Figure S8. Comparison of the four methods for estimating exposure to fire-originated PM2.5 
between 8-20 October 2017. (1) Base case, BME data fusion with CMAQ % attributable as 
background; (2) CC-CMAQ with CMAQ % attributable as background; (3) BME kriging with 
CMAQ % attributable as background; (4) BME data fusion with October 2016 as background.   
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Figure S9. The individual contributions of uncertainties in the CRF and total PM2.5 surface to the 
total uncertainty in estimated cardiovascular hospital admissions when uncertainties in both the 
CRF and total PM2.5 surface are accounted for. Uncertainties are shown as 95% confidence 
intervals with the vertical line marking the mean estimate. Results are shown using the three total 
PM2.5 exposure estimates (CC-CMAQ, BME kriging, and BME data fusion), which all use 
CMAQ % attributable for the background concentrations and the WF CRF.  
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Table S1. Number of daily excess respiratory, cardiovascular, and asthma hospital admissions 
attributable to wildfire-originated PM2.5, 8-20 October 2017, estimated using base case 
assumptions. 

Date 
October 2017 

# Attributable Admissions (95% CI) 

Respiratory Cardiovascular Asthma 

8 1.61 (0.78, 2.69) 0.50 (-0.08, 1.15) 0.29 (0.12, 0.51) 

9 10.40 (4.75, 18.32) 3.08 (-0.46, 7.40) 1.82 (0.71, 3.39) 

10 27.42 (12.93, 46.47) 7.63 (-1.13, 17.86) 4.58 (1.8, 8.34) 

11 39.91 (18.83, 67.76) 10.96 (-1.65, 25.75) 7.15 (2.81, 13.04) 

12 37.74 (17.56, 64.54) 10.65 (-1.73, 25.12) 7.69 (2.98, 14.03) 

13 30.94 (14.78, 51.46) 8.97 (-1.39, 20.84) 6.39 (2.53, 11.45) 

14 20.33 (9.83, 33.61) 6.03 (-0.89, 13.94) 3.94 (1.6, 6.96) 

15 10.73 (5.19, 17.85) 3.11 (-0.46, 7.23) 1.92 (0.79, 3.39) 

16 11.94 (5.74, 19.87) 3.38 (-0.55, 7.86) 2.08 (0.85, 3.68) 

17 17.60 (8.49, 29.25) 4.97 (-0.76, 11.50) 3.29 (1.34, 5.79) 

18 18.13 (8.67, 30.19) 5.10 (-0.83, 11.79) 3.41 (1.38, 6.01) 

19 9.82 (4.59, 16.88) 2.69 (-0.43, 6.39) 1.78 (0.71, 3.22) 

20 2.96 (1.39, 5.08) 0.77 (-0.12, 1.83) 0.52 (0.21, 0.92) 

Total 239.53 (113.54, 403.99) 67.84 (-10.48, 158.64) 44.85 (17.81, 80.73) 
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Table S2. Numeric data for the sensitivity analyses presented in Figures 4 and S9. All 
approaches use CMAQ % attributable as background concentration and the WF CRF. 

Total PM2.5 
Exposure Estimate 

Source(s) of 
Uncertainty 

# Attributable Admissions (95% CI) 

Respiratory Cardiovascular 

CC-CMAQ Total PM2.5 250 (95, 570) 69 (27, 154) 

CRF 210 (110, 310) 59 (-9, 127) 

Total PM2.5 & CRF 251 (77, 620) 70 (-10, 211) 

BME Kriging Total PM2.5 258 (182, 388) 72 (52, 105) 

CRF 246 (128, 367) 69 (-11, 152) 

Total PM2.5 & CRF 280 (124, 512) 78 (-12, 192) 

BME Data Fusion Total PM2.5 239 (186, 317) 68 (53, 88) 

CRF 233 (122, 348) 66 (-10, 145) 

Total PM2.5 & CRF 240 (114, 404) 68 (-10, 159) 
 
 
 
 


